智能交通与大数据的契合
智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。
大数据分析预测系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个大数据分析预测系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。
在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的大数据量可以达到PB级别,并且呈现指数级增长。
智能交通与大数据的关系
既然大数据时代潮流已经不可阻挡,那么我们该怎样认识大数据以及大数据与智能交通的关系呢?大数据只是一次简单的技术革新还是手段的升级换代呢,还是根本意义上的变革革命呢?
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。智能交通的发展以“保障安全、提高效率、改善环境、节约能源”为目标已经受到各国的重视,我国的智能交通也实现了快速发展,许多技术手段都达到了国际领先水平。但是,问题和困境也非常突出,从各个城市的发展状况来看,智能交通的潜在价值还没有得到有效挖掘:对交通信息的感知和收集有限,对存在于各个管理系统中的海量的大数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。这虽然有各地在建设理念、投入上的差异,但是整体上智能交通的现状是效率不高,智能化程度不够,使得很多先进技术设备发挥不了应有的作用,也造成了大量投入上的资金浪费。这其中很重要的问题是小数据时代带来的硬伤:从模拟时代带来的管理思想和技术设备只能进行一定范围的分析,而管理系统的那些关系型数据库只能刻板的分析特定的关系,对于海量大数据尤其是半结构、非结构大数据无能为力。
在当前大数据时代,数据充斥所带来的影响远远超出了企业领域,其不仅能带来商业价值,亦能产生社会价值。随着信息通讯技术的发展,交通运输从数据贫乏的困境转向数据丰富的环境,而面对众多的交通大数据,如何从中根据用户需求提取有效数据成为关键所在。但是,大数据技术在智能交通应用领域同样面临着巨大挑战,包括隐私,数据处理硬件设施、数据不完备性、模型有效性等领域,这些都是我们未来继续需要探讨和解决的问题。
上一篇:探索大数据
下一篇:大数据是传说,但也不必迷恋