一、VAR模型
向量自回归模型,即VAR模型,是用模型中所有当期变量对所有变量的若干滞后变量进行回归。VAR模型用来估计联合内生变量的动态关系,而不带有任何事先约束条件,其一般形式为:
其中,Yt是k维内生变量,Yt-i是滞后内生变量向量,p分别是内生变量和外生变量的滞后阶数。Ai是k*k维系数矩阵,是待估计的参数矩阵。是由k维随机误差项构成的向量,其元素相互之间可以同期相关,但不能与各自的滞后项相关以及不能与模型右边的变量相关。
模型中每个方程的右边都是前定变量,没有非滞后的内生变量,且每个方程右边的变量又都是相同的,因此使用OLS估计方法可以得到与VAR模型参数一致的且有效的估计量。
对于滞后长度p的选取,一般希望滞后数足够大以便能够较好的反映所构造模型的动态特征。但是滞后数越大,模型中待估计的参数也越多,模型的自由度也越小。一般地,可以根据AIC信息准则和SC准则取值最小的原则来确定模型的滞后阶数。
在知道了各参数、残差以及其协方差矩阵的情况下,我们可以通过脉冲函数来计算某个内生变量的随机扰动的一个标准差冲击对VAR模型中所有内生变量当前值和未来取值的影响。为了简单,考虑如下包含两个内生变量且滞后一阶的VAR模型:
其中,称模型中的随机扰动动项为新息,若其发生变化,将使得变量Y1t的当前值会立即发生改变。同时,通过模型的作用也会使得变量的下一期值发生变化,由于滞后的影响,Y2t的变化又会引起Y1t未来值的变化。这样,随着时间的推移,扰动的最初影响在VAR模型中的扩散将引起模型中所有内生变量的更大变化。
需要注意的是如果新息是不相关的,则我们能够确定某个变量的扰动是如何影响模型中所有其他变量的;如果新息是相关的,则表明它们包含一个不与特定变量相联系的共同成分,此时,将共同成分的效应归属于VAR模型中第一个出现的变量。
VAR模型是研究货币政策的常用工具。这种方法可以以一种简单有力的方法描述内生变量间的动态作用。事实上,VAR结构也非常适合于分析货币政策变化时的财政传导过程。VAR技术由于能够对宏观政策效应进行验证并检验政策当局对商业周期的反馈作用而显得特别有用,因此,小编将以《我国财政货币政策对经济增长、价格波动的影响研究》这个实例进行VAR建模分析。
二、《我国财政货币政策对经济增长、价格波动的影响研究》背景
近几年一系列扩大内需的宏观经济政策对我国经济稳步发展起到了巨大的推动作用,特别是积极的财政政策和稳健的货币政策在扩大内需、推进经济向均衡状态发展等方面功不可没。但这也给我们提出一个问题,即这些政策如何对经济产生影响,它们的作用机制是怎样,经济面对这样的冲击又会产生什么样的反应?
对于以上问题的解析,小编将构建VAR模型进行详细解析。因此,考虑到财政货币政策实际运行结果是各种冲击作用下的综合反应,小编将以我国经济增长中近期时间数据为依托,构建名义GDP增长率、财政支出增长率、货币供应量增长率以及商品零售价格上涨率等4个变量的VAR模型,对我国财政政策货币政策的作用关系作实证分析检验,并通过脉冲响应函数,主要分析财政货币政策对经济增长和价格波动影响的动态效应。
三、《我国财政货币政策对经济增长、价格波动的影响研究》指标构建与数据来源
(一)指标构建
货币政策指标:在国内外的研究中,选择什么变量代表货币政策长期以来就是一个争论不休的话题,具体来说主要包括货币供应量和利率。但由于我国利率是管制利率,尚未实现完全市场化,不能及时反映货币市场资金的供求状况。所以货币政策主要通过控制货币供应量来调节总需求,进而影响物价和国民收入,因此,小编选取广义货币供应量M2增长率作为我国货币政策的代表变量。
财政政策指标:财政政策主要通过财政收入和财政支出手段来调控宏观经济,而财政收入主要来源与税收收入,但税收本身就是经济总量的增函数,并不能准确反映财政政策的松紧程度。因此,小编选取财政支出(GE)增长率作为财政政策的代表变量。
经济增长与价格波动指标:小编选取名义GDP增长率作为衡量经济增长的指标。而由于1985年前CPI数据的缺失,因此小编选取商品零售价格指数(RPI)上涨率作为衡量物价上涨程度的代表变量。
(二)数据来源
所有数据均来自《中国统计年鉴》和《中国金融年鉴》,其中1990年前未统计广义货币供应量M2数据,因此,小编利用《中国金融年鉴》中1952-1989年国家银行信贷资金来源运用表对1978~1989年的M2进行了整理计算。
那么接下来的具体建模过程,小编将会在下期指数学院中发布,请持续关注。